Advertisements
Advertisements
प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
उत्तर
Consider the given integral
`I=int((2x-5)e^(2x))/((2x-3)^2)dx`
Rewriting the above integral as
`I=inte^(2x-3) xxe^3(2x-3-2)/((2x-3)^3)dx`
`=e^3inte^(2x-3)[(2x-3)/(2x-3)^3-2/(2x-3)^3]dx`
`=e^3inte^(2x-3) [1/(2x-3)^2-2/(2x-3)^3]dx`
Let us consider, 2x -3 = t
⇒ 2dx = dt
`therefore I=e^3/2inte^t[(t-2)/t^3]dt`
Let `f(t)=1/t^2`
`f'(t)=(-2)/t^3`
if I = ∫et[f(t)+f'(t)]dt then, I = etf(t) + C
`:.I=e^3/2xxe^txxf(t)+C`
`= e^3/2xxe^txx1/t^2+C`
`=e^3/2xxe^(2x-3)xx1/(2x-3)^2+C`
`=e^(2x)/(2(2x-3))+C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int(5x + 2)/(3x - 4) dx` = ______
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).