Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(sin x)/(1+ cos x)^2`
उत्तर
Let `I = int (sin x)/(1 + cos x)^2` dx
Put 1 + cos x = t
⇒ - sin x dx = dt
∴ `I = - int dt/t^2 = t^(-2 + 1)/(-2 + 1) + C`
`= 1/t + C`
`= 1/(1 + cos x) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Write a value of
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int sqrt(1 + "x"^2) "dx"` =
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate: `int "x" * "e"^"2x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(1 + sin2x) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int cot^2x "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`