Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/(4x^2 - 3).dx`
उत्तर
I = `int (1)/(4x^2 - 3).dx`
= `(1)/(4) int (1)/(x^2 - 3/4).dx`
= `(1)/(4) int (1)/(x^2 - (sqrt(3)/2)^2).dx`
= `(1)/(4) (1)/(2(sqrt(3)/2))log|(x - sqrt(3)/(2))/(x + sqrt(3)/(2))| + c`
= `(1)/(4sqrt(3)) log |(2x - sqrt(3))/(2x + sqrt(3))| + c`.
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`1/(1 + cot x)`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
`int "dx"/(9"x"^2 + 1)= ______. `
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int (logx)2.dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int (log x)/(log ex)^2` dx = _________
`int sin^-1 x`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
Write `int cotx dx`.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int (1+x+x^2/(2!)) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int sin^2(x/2)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+x^2/(2!))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`