Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I } = \int \left( \frac{1 + \log x}{3 + x \log x} \right)dx\]
\[\text{ Let 3 }+ x \log x = t\]
\[ \Rightarrow 0 + \left( x . \frac{1}{x} + \log x \right)dx = dt\]
\[ \Rightarrow \left( 1 + \log x \right)dx = dt\]
\[ \therefore I = \int \frac{dt}{t}\]
\[ = \text{ log t + C }\]
\[ = \text{ log }\left( 3 + x \log x \right) + C \left( \because t = 3 + x \log x \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int cot^2x "d"x`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int cos^3x dx` = ______.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`