Advertisements
Advertisements
प्रश्न
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
उत्तर
Let I = `int (3"x"^3 - 2sqrt"x")/"x"` dx
`= int ("3x"^3/"x" - "2x"^(1/2)/"x")` dx
`= int (3"x"^2 - 2"x"^(-1/2))` dx
`= 3 int "x"^2 * "dx" - 2 int "x"^(-1/2) * "dx"`
`= 3 ("x"^3/3) - 2("x"^(1/2)/(1/2))` + c
∴ I = x3 - 4`sqrt"x"` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Solve: dy/dx = cos(x + y)
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
`int (sin4x)/(cos 2x) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int1/(4 + 3cos^2x)dx` = ______
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).