Advertisements
Advertisements
प्रश्न
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
उत्तर
Let I = `int (3"x"^3 - 2sqrt"x")/"x"` dx
`= int ("3x"^3/"x" - "2x"^(1/2)/"x")` dx
`= int (3"x"^2 - 2"x"^(-1/2))` dx
`= 3 int "x"^2 * "dx" - 2 int "x"^(-1/2) * "dx"`
`= 3 ("x"^3/3) - 2("x"^(1/2)/(1/2))` + c
∴ I = x3 - 4`sqrt"x"` + c
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`sqrt(ax + b)`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`