Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I }= \int \left( e^{2 x^2 + \ln x} \right)dx\]
\[ = \int \left( e^{2 x^2} \times e^{ \text{ ln x}} \right)dx\]
\[ = \int e^{2 x^2} . x \text{ dx}\]
\[\text{ Let 2}\ x^2 = t\]
\[ \Rightarrow \text{ 4x dx} = dt\]
\[ \Rightarrow\text{ x dx} = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int e^t dt\]
\[ = \frac{1}{4} e^t + C\]
\[ = \frac{1}{4} e^{2 x^2} + C \left( \because t = 2 x^2 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int (sin4x)/(cos 2x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int x^3"e"^(x^2) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`