Advertisements
Advertisements
प्रश्न
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
उत्तर
f '(x) = `"x"^2/2 - "kx" + 1` ...[Given]
f(x) = ∫ f '(x) dx
`= int ("x"^2/2 - "kx" + 1)`dx
`= 1/2 int "x"^2 "dx" - "k" int "x" "dx" + int 1 * "dx"`
`= 1/2 * "x"^3/3 - "k" ("x"^2/2) + "x" + "c"`
∴ f(x) = `"x"^3/6 - "k"/2 "x"^2 + "x" + "c"` ...(i)
Now, f(0) = 2
∴ `(0)^3/6 - "k"/2 (0)^2 + 0 + "c"` = 2
∴ c = 2 ...(ii)
Also f(3) = 5 ...[Given]
∴ `(3)^3/6 - "k"/2 (3)^2 + 3 + 2 = 5`
∴ `27/6 - "9k"/2 + 5 = 5`
∴ `9/2 - "9k"/2 = 0`
∴ `"9k"/2 = 9/2`
∴ k = 1 ....(iii)
Substituting (ii) and (iii) in (i), we get
f(x) = `"x"^3/6 - "x"^2/2 + "x" + 2`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Solve: dy/dx = cos(x + y)
Write a value of
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int1/(4 + 3cos^2x)dx` = ______
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int (logx)^2/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`