Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
उत्तर
Let I = `int "x" sqrt(1 + "x"^2)` dx
Put 1 + x2 = t
∴ 2x . dx = dt
∴ x . dx = `1/2` dt
∴ I = `1/2 int sqrt"t" * "dt"`
`= 1/2 int "t"^(1/2) *` dt
`= 1/2 * "t"^(3/2)/(3/2)` + c
`= 1/3 "t"^(3/2)` + c
∴ I = `1/3 (1 + "x"^2)^(3/2)` + c
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int (7x + 9)^13 "d"x` ______ + c
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int 1/(sinx.cos^2x)dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`