Advertisements
Advertisements
प्रश्न
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
पर्याय
10x - x10 + C
10x + x10 + C
(10x - x10)-1 + C
log (10x + x10) + C
उत्तर
log (10x + x10) + C
Explanation:
Let `I = int (10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx`
Put x10 + 10x = t
(10x9 + 10x loge 10) dx = dt
`therefore I = int dt/d`
= log |t| + C
= log (10x + x10) + C
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x^x (1 + logx) "d"x`
`int cos^7 x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int sin^-1 x`dx = ?
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).