English

10x9+10xloge10x10+10x dx equals: - Mathematics

Advertisements
Advertisements

Question

`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:

Options

  • 10x - x10 + C

  • 10x + x10 + C

  • (10x - x10)-1 + C

  • log (10x + x10) + C

MCQ

Solution

log (10x + x10) + C

Explanation:

Let `I = int  (10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx`

Put x10 + 10x = t 

(10x9 + 10x loge 10) dx = dt

`therefore I = int dt/d`

= log |t| + C

= log (10x + x10) + C

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.2 [Page 305]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.2 | Q 38 | Page 305

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :`intxlogxdx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Evaluate: `int 1/(x(x-1)) dx`


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


`int (log x)/(log ex)^2` dx = _________


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


Write `int cotx  dx`.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×