English

Integrate the following functions w.r.t. x : ∫13+2sin2x+4cos2x.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`

Sum

Solution

Let I = `int (1)/(3 + 2 sin2x + 4cos 2x).dx`

Put tan x = t
∴ x = tan–1 t

∴ dx = `dt/(1 + t^2) and sin 2x = (2t)/(1 + t^2),, cos2x = (1 - t^2)/(1 + t^2)`

∴ I = `int (1)/(3 + 2((2t)/(1 + t^2)) + 4((1 - t^2)/(1 + t^2))).dt/(1 + t^2)`

= `int (1 + t^2)/(3(1 + t^2) + 4t + 4(1 - t^2)).dt/(1 + t^2)`

= `int (1)/(7 + 4t - t^2)dt = int (1)/(7 - (t^2 - 4t + 4) + 4)dt`

= `int (1)/((sqrt(11))^2 - (t - 2)^2)dt`

= `(1)/(2sqrt(11))log|(sqrt(11) + t - 2)/(sqrt(11) - t + 2)| + c`

= `(1)/(2sqrt(11))log|(sqrt(11) + tan x - 2)/(sqrt(11) - tan x + 2)| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sin x/(1+ cos x)`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate `int 1/("x" ("x" - 1))` dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Evaluate `int 1/((2"x" + 3))` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


If f'(x) = `x + 1/x`, then f(x) is ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int (logx)^2/x dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate `int1/(x(x - 1))dx`


`int x^3 e^(x^2) dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×