Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Solution
Let I = `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Put tan x = t
∴ x = tan–1 t
∴ dx = `dt/(1 + t^2) and sin 2x = (2t)/(1 + t^2),, cos2x = (1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(3 + 2((2t)/(1 + t^2)) + 4((1 - t^2)/(1 + t^2))).dt/(1 + t^2)`
= `int (1 + t^2)/(3(1 + t^2) + 4t + 4(1 - t^2)).dt/(1 + t^2)`
= `int (1)/(7 + 4t - t^2)dt = int (1)/(7 - (t^2 - 4t + 4) + 4)dt`
= `int (1)/((sqrt(11))^2 - (t - 2)^2)dt`
= `(1)/(2sqrt(11))log|(sqrt(11) + t - 2)/(sqrt(11) - t + 2)| + c`
= `(1)/(2sqrt(11))log|(sqrt(11) + tan x - 2)/(sqrt(11) - tan x + 2)| + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate `int 1/((2"x" + 3))` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
If f'(x) = `x + 1/x`, then f(x) is ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int (logx)^2/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`
`int x^3 e^(x^2) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`