Advertisements
Advertisements
Question
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Solution
Let I = `int (2x + 3)/(2x^2 + 3x - 1).dx`
Let 2x + 3 = `"A"[d/dx(2x^2 + 3x - 1)] + "B"`
= A(4x + 3) + B
∴ 2x + 3 = 4Ax + (3A + B)
Comapring the coefficientof x and constant on both sides, we get
4A = 2 and 3A + B = 3
∴ A = `(1)/(2) and 3(1/2) + "B"` = 3
∴ B = `(3)/(2)`
∴ 2x + 3 = `(1)/(2)(4x + 3) + (3)/(2)`
∴ I = `int (1/2(4x + 3) + (3)/(2))/(2x^2 + 3x - 1).dx`
= `(1)/(2) int (4x + 3)/(2x^2 + 3x - 1).dx + (3)/(2) int (1)/(2x^2 + 3x - 1).dx`
= `(1)/(2)"I"_1 + (3)/(2)"I"_2`
I1 is of the type `int (f'(x))/f(x)dx = log|f(x)| + c`
∴ I1 = log |2x2 + 3x – 1| + c1
I2 = `int (1)/(2x^2 + 3x - 1).dx`
= `(1)/(2) int (1)/(x^2 + 3/2x - 1/2).dx`
= `(1)/(2) int (1)/((x^2 + 3/2x + 9/16) - 9/16 - 1/2).dx`
= `(1)/(2) int (1)/((x + 3/4)^2 - (sqrt(17)/4)^2).dx`
= `(1)/(2) xx (1)/(2 xx sqrt(17)/(4))log|(x + 3/4 - sqrt(17)/4)/(x + 3/4 + sqrt(17)/4)| + c_2`
= `(1)/sqrt(17)log|(4x + 3 - sqrt(17))/(4x + 3 + sqrt(17))| + c_2`
∴ I = `(1)/(2)log|2x^2 + 3x - 1| + (3)/(2sqrt(17))log|(4x + 3 - sqrt(17))/(4x + 3 + sqrt(17))| + c`, where c = c + c2.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int x/(x + 2) "d"x`
`int cos^7 x "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int cos^3x dx` = ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int "cosec"^4x dx` = ______.
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`