Advertisements
Advertisements
Question
Evaluate: `int 1/(sqrt("x") + "x")` dx
Solution
Let I = `int 1/(sqrt("x") + "x")` dx
`= int 1/(sqrt"x" (1 + sqrt"x"))` dx
Put `1 + sqrt"x"` = t
∴ `1/(2sqrt"x") "dx"` = dt
∴ `1/sqrt"x" "dx"` = 2 dt
∴ I = `int (2 * "dt")/"t"`
`= 2 int 1/"t"` dt
= 2 log |t| + c
∴ I = 2 log `|1 + sqrt"x"|` + c
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate `int 1/("x" ("x" - 1))` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int(1+ x + x^2/(2!)) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`