English

Evaluate the following : ∫1x2+8x-20.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`

Sum

Solution

`int (1)/sqrt(x^2 + 8x - 20).dx`

= `int (1)/(sqrt((x^2 + 8x + 16) - 16 - 20)).dx`

= `int (1)/(sqrt((x + 4)^2 - 36)).dx`

= `int (1)/(sqrt((x + 4)^2 - (6)^2)).dx`

= `log|(x + 4) + sqrt((x + 4)^2 - (6)^2)| + c`

= `log|(x + 4) + sqrt(x^2 + 8x - 20)| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

RELATED QUESTIONS

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

\[\int x \sin^3 x\ dx\]

Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int log ("x"^2 + "x")` dx


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int cos^7 x  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int sqrt(x^2 - a^2)/x dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate `int 1/(x(x-1))dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`int sin^3x cos^3x  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×