Advertisements
Advertisements
Question
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Solution
Let I = `int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Put, Numerator = A(Denominator) + B[`d/dx`(Denominator)]
Let 3ex + 4 = A(2ex - 8) + B `"d"/"dx"`(2ex - 8)
= 2 Aex - 8A + B(2ex )
∴ 3ex + 4 = (2A + 2B)ex - 8A
Comparing the coefficients of ex and constant term on both sides, we get
2A + 2B = 3 and - 8A = 4
Solving these equations, we get
A = `- 1/2` and B = 2
∴ I = `int (- 1/2 (2"e"^"x" - 8) + 2(2"e"^"x"))/(2"e"^"x" - 8)`dx
`= - 1/2 int "dx" + 2 int ("2e"^"x")/(2"e"^"x" - 8)` dx
∴ I = `- 1/2"x" + 2log |2"e"^"x" - 8|` + c ...`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).