Advertisements
Advertisements
Question
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Solution
Let `I = int (sin^-1 x)/sqrt(1 - x^2)` dx
Put sin-1 x = t
`1/sqrt(1 - x^2)` dx = dt
Hence, `I = int t dt`
`=1/2t^2 + C`
`=1/2 (sin^-1 x)^2 + C`
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int cos^7 x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`