Advertisements
Advertisements
Question
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
Solution
Let I = `int sqrt("x"^2 + 2"x" + 5)` dx
`= int sqrt("x"^2 + 2"x" + 1 + 4)` dx
`= int sqrt(("x + 1")^2 + (2)^2)` dx
`= ("x" + 1)/2 sqrt(("x" + 1)^2 + (2)^2) + (2)^2/2 log |("x + 1") + sqrt(("x + 1")^2 + (2)^2)|` + c
∴ I = `("x" + 1)/2 sqrt("x"^2 + 2"x" + 5) + 2 log |("x + 1") + sqrt("x"^2 + 2"x" + 5)|` + c
APPEARS IN
RELATED QUESTIONS
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int x^x (1 + logx) "d"x`
`int x/(x + 2) "d"x`
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int "cosec"^4x dx` = ______.
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`