English

∫2x-x+3 dx = ________________ - Mathematics and Statistics

Advertisements
Advertisements

Question

`int 2/(sqrtx - sqrt(x + 3))` dx = ________________

Options

  • `-2/3 [x^(3/2) + (x + 3)^(3/2)] + "c"`

  • `2/3 [x^(3/2) - (x + 3)^(3/2)] + "c"`

  • `4/9 [x^(3/2) - (x + 3)^(3/2)] + "c"`

  • `-4/9 [x^(3/2) + (x + 3)^(3/2)] + "c"`

MCQ
Fill in the Blanks

Solution

`-4/9 [x^(3/2) + (x + 3)^(3/2)] + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - MCQ

RELATED QUESTIONS

Evaluate :`intxlogxdx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sin x/(1+ cos x)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


`int 1/(cos x - sin x)` dx = _______________


`int 1/(xsin^2(logx))  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int x^3"e"^(x^2) "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int (cos x)/(1 - sin x) "dx" =` ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


`int secx/(secx - tanx)dx` equals ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate `int 1/(x(x-1))dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×