Advertisements
Advertisements
Question
`int x^3"e"^(x^2) "d"x`
Solution
Let I = `int x^3*"e"^(x^2) "d"x`
= `int x^2*x"e"^(x^2) "d"x`
Put x2 = t
∴ 2x.dx = dt
∴ x dx = `"dt"/2`
∴ I = `1/2 int"te"^"t" "dt"`
= `1/2 ["t" int"e"^"t" "dt" - int["d"/"dt"("t") int"e"^"t""dt"]"dt"]`
= `1/2 ["te"^"t" - int1*"e"^"t""dt"]`
= `1/2 ("te"^"t" - "e"^"t") + "c"`
= `1/2 "e"^"t" ("t" - 1) + "c"`
∴ I = `1/2 "e"^(x^2) (x^2 - 1) + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int sqrt(1 + sin2x) "d"x`
`int cos^7 x "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int (f^'(x))/(f(x))dx` = ______ + c.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`