Advertisements
Advertisements
Question
`int (f^'(x))/(f(x))dx` = ______ + c.
Solution
`int (f^'(x))/(f(x))dx` = log f'(x) + c.
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sin x/(1+ cos x)`
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int log ("x"^2 + "x")` dx
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following.
`int1/(x^2+4x-5) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).