Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int e^{ax} . \text{ cos bx dx }\]
\[ = \cos bx\int e^{ax} \text{ dx} - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} - \int - \sin bx \times b . \frac{e^{ax}}{a}\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \frac{b}{a}\int e^{ax} . \text{ sin bx dx }\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \text{ sin bxdx}\]
\[ = \sin bx\int e^{ax} \text{ dx} - \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax}\text{ dx }\right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int b . \cos bx \times \frac{e^{ax}}{a}dx\]
\[ = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{ From} \left( 1 \right) \text{ and }\left( 2 \right)\]
\[ \therefore I = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a} \left\{ \sin bx . \frac{e^{ax}}{a} - \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a^2} \text{ sin bx e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \cos bx . \frac{e^{ax}}{a} + \frac{b \text{ sin bx e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \cos bx + b \sin bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \cos bx + b\sin bx \right) e^{ax}}{a^2 + b^2} + C\]
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int logx/x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`