English

Write a Value of ∫ E a X Cos B X D X - Mathematics

Advertisements
Advertisements

Question

Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 

Sum

Solution

\[\text{ Let I }= \int e^{ax} . \text{ cos bx dx }\]
\[ = \cos bx\int e^{ax} \text{ dx} - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} - \int - \sin bx \times b . \frac{e^{ax}}{a}\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \frac{b}{a}\int e^{ax} . \text{ sin bx dx }\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \text{ sin  bxdx}\]
\[ = \sin bx\int e^{ax} \text{ dx} - \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax}\text{  dx }\right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int b . \cos bx \times \frac{e^{ax}}{a}dx\]
\[ = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{  From} \left( 1 \right) \text{ and }\left( 2 \right)\]
\[ \therefore I = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a} \left\{ \sin bx . \frac{e^{ax}}{a} - \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a^2} \text{ sin  bx  e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \cos bx . \frac{e^{ax}}{a} + \frac{b \text{ sin  bx  e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \cos bx + b \sin bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \cos bx + b\sin bx \right) e^{ax}}{a^2 + b^2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 32 | Page 197

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int logx/x  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int 1/(x(x-1))dx`


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×