Advertisements
Advertisements
Question
`int logx/x "d"x`
Solution
Put log x = t
∴ `1/x "d"x` = dt
∴ `int logx/x "d"x = int "t" "dt"`
= `"t"^2/2 + "c"`
`((log x)^2)/2 + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following : `int (logx)2.dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int dx/(1 + e^-x)` = ______
`int(5x + 2)/(3x - 4) dx` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int 1/("x"("x" - 1)) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`