English

∫logxx dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int logx/x  "d"x`

Sum

Solution

Put log x = t

∴ `1/x  "d"x` = dt

∴ `int logx/x  "d"x = int "t"  "dt"`

= `"t"^2/2 + "c"`

 `((log x)^2)/2 + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Very Short Answers

APPEARS IN

RELATED QUESTIONS

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following : `int (logx)2.dx`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int 1/(cos x - sin x)` dx = _______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int dx/(1 + e^-x)` = ______


`int(5x + 2)/(3x - 4) dx` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate `int 1/("x"("x" - 1)) "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int "cosec"^4x  dx` = ______.


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×