Advertisements
Advertisements
Question
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Solution
`int (1 + "x" + "x"^2/(2!))`dx
`= int 1 "dx" + int "x" "dx" + 1/(2!) int "x"^2 "dx"`
`= "x" + "x"^2/2 + 1/(2!) xx "x"^3/3 + "c"`
∴ `"x" + "x"^2/2 + "x"^3/6 + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int (5"x" + 1)^(4/9)` dx
`int 1/(cos x - sin x)` dx = _______________
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`