Advertisements
Advertisements
Question
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Solution
Let I = `int ("e"^"x" + "e"^(- "x"))^2 * ("e"^"x" - "e"^(-"x"))`dx
Put `"e"^"x" + "e"^(- "x")` = t
∴ `"e"^"x" - "e"^(- "x")`dx = dt
∴ I = `int "t"^2 . "dt"`
∴ I = `(t^(2 + 1))/(2 + 1) + c`
∴ I = `(t^3)/(3) + c`
∴ I = `[("e"^"x" + "e"^(- "x"))^3]/(3) + c`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`cos sqrt(x)/sqrtx`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int sqrt(1 + "x"^2) "dx"` =
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`