Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Solution
Let I = `int ((x - 1)^2)/(x^2 + 1)^2.dx`
= `int (x^2 - 2x + 1)/(x^2 + 1)^2.dx`
= `int ((x^2 + 1) - 2x)/(x^2 + 1)^2.dx`
= `int [(x^2 + 1)/(x^2 + 1)^2 - (2x)/(x^2 + 1)^2].dx`
= `int (1)/(x^2 + 1)dx - int (2x)/(x^2 + 1)^2.dx`
= I1 – I2 ...(Let)
In I2, Put x2 + 1 = t
∴ 2x dx = dt
= I = `int (1)/(x^2 + 1).dx - int t^-2 dt`
= `tan^-1 x - t^-1/((-1)) + c`
= `tan^-1 x + (1)/(x^2 + 1) + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`1/(1 - tan x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int x^x (1 + logx) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int (cos x)/(1 - sin x) "dx" =` ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int "cosec"^4x dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`