English

Integrate the following functions w.r.t. x : (x-1)2(x2+1)2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`

Sum

Solution

Let I = `int ((x - 1)^2)/(x^2 + 1)^2.dx`

= `int (x^2 - 2x + 1)/(x^2 + 1)^2.dx`

= `int ((x^2 + 1) - 2x)/(x^2 + 1)^2.dx`

= `int [(x^2 + 1)/(x^2 + 1)^2 - (2x)/(x^2 + 1)^2].dx`

= `int (1)/(x^2 + 1)dx - int (2x)/(x^2 + 1)^2.dx`

= I1 – I2                                     ...(Let)
In I2, Put x2 + 1 = t
∴ 2x dx = dt

= I = `int (1)/(x^2 + 1).dx - int t^-2 dt`

= `tan^-1 x - t^-1/((-1)) + c`

= `tan^-1 x + (1)/(x^2 + 1) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`1/(1 - tan x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int x^x (1 + logx)  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int (cos x)/(1 - sin x) "dx" =` ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1)/(x(x - 1))dx`


Evaluate `int (1+x+x^2/(2!)) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int "cosec"^4x  dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×