Advertisements
Advertisements
Question
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Solution
`I = int (2y^2)/(y^2 + 4) dy`
`= int(2y^2 + 8 - 8)/(y^2 + 4) dy`
`= 2int (y^2 + 4)/(y^2 + 4) dy - 8 int dy/(y^2 + 2^2)`
`= 2y - 4tan^(-1) (y/2) + c`
APPEARS IN
RELATED QUESTIONS
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`