English

Integrate the following functions w.r.t. x : ∫13+2sinx.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`

Sum

Solution

Let I = `int (1)/(3 + 2sinx).dx`

Put `tan (x/2) = t`

∴ x = 2 tan–1 t

∴ dx = `(2t)/(1 + t^2) and sinx = (2t)/(1 + t^2)`

∴ I = `int (1)/(3 + 2((2t)/(1  +  t^2))).(2dt)/(1 + t^2)`

= `int (1 + t^2)/(3 + 3t^2 + 4t).(2dt)/(1 + t^2)`

= `2 int (1)/(3t^2 + 4t + 3)dt`

= `(2)/(3) int (1)/(t^2 + 4/3t + 1)dt`

= `(2)/(3) int (1)/((t^2 + 4/3t + 4/9) - (4)/(9) + 1)dt`

= `(2)/(3) int (1)/((t + 2/3)^2 + (sqrt(5)/3)^2)dt`

= `(2)/(3) xx (1)/((sqrt(5)/3))tan^-1 [(t + 2/3)/(sqrt(5)/(3))] + c`

= `(2)/sqrt(5)tan^-1 ((3t + 2)/sqrt(5)) + c`

= `(2)/sqrt(5)tan^-1 [(3tan(x/2) + 2)/sqrt(5)] + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


\[\int x \sin^3 x\ dx\]

`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int (cos2x)/(sin^2x)  "d"x`


`int(log(logx))/x  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int x^3"e"^(x^2) "d"x`


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int sec^6 x tan x   "d"x` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int1/(x(x - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×