English

Write a Value of ∫ Tan 3 X Sec 2 X D X - Mathematics

Advertisements
Advertisements

Question

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 

Sum

Solution

Let I=\[\int\]  tan3 x . sec2 x dx

Let tan x = t
⇒ sec2x dx = dt
\[\therefore\]\[\int\] t3 . dt
\[= \frac{t^4}{4} + C\]
\[ = \frac{\tan^4 x}{4} + C \left( \because t = \tan x \right)\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 4 | Page 197

RELATED QUESTIONS

Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`(log x)^2/x`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


The value of \[\int\frac{1}{x + x \log x} dx\] is


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate `int1/(x(x-1))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int1/(x(x - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×