Advertisements
Advertisements
Question
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Solution
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + 4 log |x – 1| + c
Explanation:
`int (x^2 + x - 6)/((x - 2)(x - 1)) dx = int((x + 3)(x - 2))/((x - 2)(x - 1))`dx
= `int (x + 3)/(x - 1)`dx
= `int ((x - 1) + 4)/(x - 1)`dx
= `int ((1 + 4)/(x - 1))`dx
= x + 4 log |x – 1| + c
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int cos^7 x "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`