English

Integrate the following functions w.r.t. x : x29-x6 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`

Sum

Solution

Let I = `int x^2/sqrt(9 - x^6).dx`

Put x3 = t
∴ 3x2 dx = dt

∴ x2dx = `(1)/(3)dt`

∴ I = `int 1/sqrt(9 - t^2).dt/(3)`

= `(1)/(3) int dt/sqrt(3^2 - t^2)`

= `(1)/(3) sin^-1(t/3)  + c`

= `(1)/(3)sin^-1(x^3/3)  + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int cot^2x  "d"x`


`int x/(x + 2)  "d"x`


`int cos^7 x  "d"x`


`int x^3"e"^(x^2) "d"x`


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate `int 1/(x(x-1))dx`


Evaluate `int1/(x(x-1))dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×