English

∫ Sin X + 2 Cos X 2 Sin X + Cos X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]

Sum

Solution

\[\int\left( \frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \right)dx\]
\[\text{ Let  sin x + 2  cos x = A } \frac{d}{dx} \left( \text{ 2 sin x + cos x} \right) + \text{ B }\left( \text{ 2  sin x + cos x} \right)\]
\[ \Rightarrow \sin x + 2 \cos x = A \left( 2 \cos x - \sin x \right) + \text{ 2  B sin x + B  cos  x}\]
\[ \Rightarrow \sin x + 2 \cos x = \left( \text{ 2  A + B }\right) \cos x + \left( 2 B - A \right) \sin x\]
\[\text{Equating coefficients of like terms}\]
\[ \Rightarrow \text{ 2  A + B = 2} . . . \left( 1 \right)\]
\[ \Rightarrow - A + 2B = 1 . . . \left( 2 \right)\]
\[\text{Multiplying eq} \left( 2 \right) \text{by 2 and adding it to eq} \left( 1 \right) \text{we get}, \]
\[\text{ 5  B = 4 }\]
\[ \Rightarrow B = \frac{4}{5}\]
\[\text{  Putting  B }= \frac{4}{5} \text{ in eq }\left( 1 \right) \text{ we get,} \]
\[2 A + \frac{4}{5} = 2\]
\[ \Rightarrow A = \frac{3}{5}\]
\[ \therefore \int\left( \frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \right)dx = \int\left[ \frac{\frac{3}{5} \left( 2 \cos x - \sin x \right)}{2 \sin x + \cos x} \right]dx + \frac{4}{5}\int\frac{\left( 2 \sin x + \cos x \right)}{\left( 2 \sin x + \cos x \right)}dx\]
\[ = \frac{3}{5}\int\left( \frac{2 \cos x - \sin x}{2 \sin x + \cos x} \right)dx + \frac{4}{5}\int dx\]
\[\text{ Putting 2  sin x + cos x = t }\]
\[ \Rightarrow \left( 2 \cos x - \sin x \right) dx = dt\]
\[ \therefore I = \frac{3}{5}\int\frac{dt}{t} + \frac{4}{5}\int dx\]
\[ = \frac{3}{5} \text{ ln  }\left| t \right| + \frac{4x}{5} + C\]
\[ = \frac{3}{5} \text{ ln } \left| 2 \sin x + \cos x \right| + \frac{4x}{5} + C ...............\left[ \because t = 2 \sin x + \cos x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 60 | Page 204

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int (cos2x)/(sin^2x)  "d"x`


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate the following

`int1/(x^2 +4x-5)dx`


`int "cosec"^4x  dx` = ______.


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×