Advertisements
Advertisements
Question
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Solution
\[\int\left( \frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \right)dx\]
\[\text{ Let sin x + 2 cos x = A } \frac{d}{dx} \left( \text{ 2 sin x + cos x} \right) + \text{ B }\left( \text{ 2 sin x + cos x} \right)\]
\[ \Rightarrow \sin x + 2 \cos x = A \left( 2 \cos x - \sin x \right) + \text{ 2 B sin x + B cos x}\]
\[ \Rightarrow \sin x + 2 \cos x = \left( \text{ 2 A + B }\right) \cos x + \left( 2 B - A \right) \sin x\]
\[\text{Equating coefficients of like terms}\]
\[ \Rightarrow \text{ 2 A + B = 2} . . . \left( 1 \right)\]
\[ \Rightarrow - A + 2B = 1 . . . \left( 2 \right)\]
\[\text{Multiplying eq} \left( 2 \right) \text{by 2 and adding it to eq} \left( 1 \right) \text{we get}, \]
\[\text{ 5 B = 4 }\]
\[ \Rightarrow B = \frac{4}{5}\]
\[\text{ Putting B }= \frac{4}{5} \text{ in eq }\left( 1 \right) \text{ we get,} \]
\[2 A + \frac{4}{5} = 2\]
\[ \Rightarrow A = \frac{3}{5}\]
\[ \therefore \int\left( \frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \right)dx = \int\left[ \frac{\frac{3}{5} \left( 2 \cos x - \sin x \right)}{2 \sin x + \cos x} \right]dx + \frac{4}{5}\int\frac{\left( 2 \sin x + \cos x \right)}{\left( 2 \sin x + \cos x \right)}dx\]
\[ = \frac{3}{5}\int\left( \frac{2 \cos x - \sin x}{2 \sin x + \cos x} \right)dx + \frac{4}{5}\int dx\]
\[\text{ Putting 2 sin x + cos x = t }\]
\[ \Rightarrow \left( 2 \cos x - \sin x \right) dx = dt\]
\[ \therefore I = \frac{3}{5}\int\frac{dt}{t} + \frac{4}{5}\int dx\]
\[ = \frac{3}{5} \text{ ln }\left| t \right| + \frac{4x}{5} + C\]
\[ = \frac{3}{5} \text{ ln } \left| 2 \sin x + \cos x \right| + \frac{4x}{5} + C ...............\left[ \because t = 2 \sin x + \cos x \right]\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int (cos2x)/(sin^2x) "d"x`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
`int "cosec"^4x dx` = ______.
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`