Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
उत्तर
\[\int\left( \frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \right)dx\]
\[\text{ Let sin x + 2 cos x = A } \frac{d}{dx} \left( \text{ 2 sin x + cos x} \right) + \text{ B }\left( \text{ 2 sin x + cos x} \right)\]
\[ \Rightarrow \sin x + 2 \cos x = A \left( 2 \cos x - \sin x \right) + \text{ 2 B sin x + B cos x}\]
\[ \Rightarrow \sin x + 2 \cos x = \left( \text{ 2 A + B }\right) \cos x + \left( 2 B - A \right) \sin x\]
\[\text{Equating coefficients of like terms}\]
\[ \Rightarrow \text{ 2 A + B = 2} . . . \left( 1 \right)\]
\[ \Rightarrow - A + 2B = 1 . . . \left( 2 \right)\]
\[\text{Multiplying eq} \left( 2 \right) \text{by 2 and adding it to eq} \left( 1 \right) \text{we get}, \]
\[\text{ 5 B = 4 }\]
\[ \Rightarrow B = \frac{4}{5}\]
\[\text{ Putting B }= \frac{4}{5} \text{ in eq }\left( 1 \right) \text{ we get,} \]
\[2 A + \frac{4}{5} = 2\]
\[ \Rightarrow A = \frac{3}{5}\]
\[ \therefore \int\left( \frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \right)dx = \int\left[ \frac{\frac{3}{5} \left( 2 \cos x - \sin x \right)}{2 \sin x + \cos x} \right]dx + \frac{4}{5}\int\frac{\left( 2 \sin x + \cos x \right)}{\left( 2 \sin x + \cos x \right)}dx\]
\[ = \frac{3}{5}\int\left( \frac{2 \cos x - \sin x}{2 \sin x + \cos x} \right)dx + \frac{4}{5}\int dx\]
\[\text{ Putting 2 sin x + cos x = t }\]
\[ \Rightarrow \left( 2 \cos x - \sin x \right) dx = dt\]
\[ \therefore I = \frac{3}{5}\int\frac{dt}{t} + \frac{4}{5}\int dx\]
\[ = \frac{3}{5} \text{ ln }\left| t \right| + \frac{4x}{5} + C\]
\[ = \frac{3}{5} \text{ ln } \left| 2 \sin x + \cos x \right| + \frac{4x}{5} + C ...............\left[ \because t = 2 \sin x + \cos x \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int "e"^sqrt"x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int sqrt(x^2 - a^2)/x dx` = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`