Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
उत्तर
Let I = `int (3x + 1)/sqrt(-2x^2 + x + 3).dx`
Let 3x + 1 = `"A"[d/dx(-2x^2 + x + 3)] + "B"`
= A(2 – 2x) + B
∴ 3x + 1 = 2Ax + (2A + B)
Comparing the coefficient of x and constant on both the sides, we get
– 2A = 7 and 2A + B = 3
∴ A = `(-7)/(2) and 2(-7/2) + "B" ` = 3
∴ B = 10
∴ 7x + 3 = `(-7)/(2)(2 - 2x) + 10`
∴ I = `int ((-7)/(2)(2 - 2x) + 10)/sqrt(3 + 2x - x^2).dx`
= `(-7)/(2) int ((2 - 2x))/sqrt(3 + 2x - x^2).dx + 10 int(1)/sqrt(3 + 2x - x^2)x`
= `(-7)/(2)"I"_1 + 10"I"_2`
In I1, put 3 + 2x – x2 = t
∴ (2 – 2x)dx = dt
∴ I1 = `int (1)/sqrt(t)dt`
= `int t^(-1/2) dt`
= `t^(1/2)/(1/2) + c_1`
= `2sqrt(3 + 2x - x^2) + c_1`
I2 = `int (1)/sqrt(3 - (x^2 - 2x + 1) + 1).dx`
= `int (1)/sqrt((2)^2 - (x - 1)^2).dx`
= `sin^-1((x - 1)/2) + c_2`
`-(3)/(2) sqrt(-2x^2 + x + 3) + (7)/(4sqrt(2)) sin^-1((4x - 1)/5) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :`intxlogxdx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
`int "dx"/(9"x"^2 + 1)= ______. `
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int (log x)/(log ex)^2` dx = _________
`int logx/x "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int x^x (1 + logx) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int sec^6 x tan x "d"x` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Write `int cotx dx`.
`int (logx)^2/x dx` = ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`