मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following w.r.t.x : 3x-1-2x2+x+3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`

बेरीज

उत्तर

Let I  = `int (3x + 1)/sqrt(-2x^2 + x + 3).dx`

Let 3x + 1 = `"A"[d/dx(-2x^2 + x + 3)] + "B"`

= A(2 – 2x) + B
∴ 3x + 1 = 2Ax + (2A + B)
Comparing the coefficient of x and constant on both the sides, we get
– 2A = 7 and 2A + B = 3

∴ A = `(-7)/(2) and 2(-7/2) + "B" ` = 3

∴ B = 10
∴ 7x  + 3 = `(-7)/(2)(2 - 2x) + 10`

∴ I = `int ((-7)/(2)(2 - 2x) + 10)/sqrt(3 + 2x - x^2).dx`

= `(-7)/(2) int ((2 - 2x))/sqrt(3 + 2x - x^2).dx + 10 int(1)/sqrt(3 + 2x - x^2)x`

= `(-7)/(2)"I"_1 + 10"I"_2`

In I1, put 3 + 2x – x2 = t
∴ (2 – 2x)dx = dt

∴ I1 = `int (1)/sqrt(t)dt`

= `int t^(-1/2) dt`

= `t^(1/2)/(1/2) + c_1`

= `2sqrt(3 + 2x - x^2) + c_1`

I2 = `int (1)/sqrt(3 - (x^2 - 2x + 1) + 1).dx`

= `int (1)/sqrt((2)^2 - (x - 1)^2).dx`

= `sin^-1((x - 1)/2) + c_2`

`-(3)/(2) sqrt(-2x^2 + x + 3) + (7)/(4sqrt(2)) sin^-1((4x - 1)/5) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.11 | पृष्ठ १५०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate :`intxlogxdx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`(1+ log x)^2/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

`int "dx"/(9"x"^2 + 1)= ______. `


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int (log x)/(log ex)^2` dx = _________


`int logx/x  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int x^x (1 + logx)  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int sec^6 x tan x   "d"x` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


Write `int cotx  dx`.


`int (logx)^2/x dx` = ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int1/(x(x-1))dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×