Advertisements
Advertisements
प्रश्न
`int "dx"/(9"x"^2 + 1)= ______. `
पर्याय
`1/3 "tan"^-1(2"x") +"c"`
`1/3 "tan"^-1"x" +"c"`
`1/3 "tan"^-1(3"x") +"c"`
`1/3 "tan"^-1(6"x") +"c"`
उत्तर
`1/3 "tan"^-1(3"x") +"c"`
Let I = `int "dx"/(9"x"^2 + 1)`
= `1/9 int "dx"/(("x"^2) +(1/3)^2)`
= `1/9 1/(1/3) "tan"^-1("x"/(1/3)) + "C"`
`= 1/3 "tan"^-1(3"x") + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
`int sqrt(1 + "x"^2) "dx"` =
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int x^x (1 + logx) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int (1+x+x^2/(2!)) dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).