Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
उत्तर
Let I = `int "x"^5/("x"^2 + 1)`dx
`int (("x"^2)^2 * "x")/("x"^2 + 1)`dx
Put x2 + 1 = t
∴ 2x . dx = dt
∴ x . dx = `1/2 * "dt"`
Also, x2 = t - 1
∴ I = `int ("t" - 1)^2/"t" * 1/2`dt
`= 1/2 int ("t"^2 - 2"t" + 1)/"t"`dt
`= 1/2 int ("t" - 2 + 1/"t")`dt
`= 1/2 ["t"^2/2 - 2"t" + log |"t"|]` + c
`= 1/4 "t"^2 - "t" + 1/2 log |"t"| + "c"`
∴ I = `1/4 ("x"^2 + 1)^2 - ("x"^2 + 1) + 1/2 log |"x"^2 + 1|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
Write `int cotx dx`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int1/(x(x-1))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).