Advertisements
Advertisements
प्रश्न
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
उत्तर
1 + log x = t
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
sec2(7 – 4x)
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int sqrt(1 + "x"^2) "dx"` =
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).