Advertisements
Advertisements
प्रश्न
`int (1 + x)/(x + "e"^(-x)) "d"x`
उत्तर
Let I = `int (1 + x)/(x + "e"^(-x)) "d"x`
= `int (1 + x)/(x + 1/"e"^x) "d"x`
= `int (1 + x)/((x*"e"^x + 1)/("e"^x)) "d"x`
= `int ("e"^x (1 + x))/(x*"e"^x + 1) "d"x`
Put x. ex + 1 = t
∴ [x. (ex) + ex. (1) + 0] dx = dt
∴ ex (x + 1) dx = dt
∴ I = `int "dt"/"t"`
= log |t| + c
∴ I = log |x. ex + 1| + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`xsqrt(1+ 2x^2)`
Write a value of
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`