Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
उत्तर
`int(2x^3 - 5x + 3/x + 4/x^5)dx`
= `2intx^3 dx - 5 int x dx + 3 int1/x dx + 4 int x^-5 dx`
= `2(x^4/4) - 5(x^2/2) + 3 log |x| + 4(x^-4/(-4)) + c`
= `x^4/(2) - (5)/(2) x^2 + 3 log |x| - (1)/x^4 + c`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
`int "dx"/(9"x"^2 + 1)= ______. `
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int x^x (1 + logx) "d"x`
`int x/(x + 2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Write `int cotx dx`.
`int secx/(secx - tanx)dx` equals ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).