Advertisements
Advertisements
प्रश्न
Evaluate: `int "x" * "e"^"2x"` dx
उत्तर
Let I = `int "x" * "e"^"2x"` dx
`= "x" int "e"^"2x" "dx" - int["d"/"dx" ("x") int "e"^"2x" * "dx"]` dx
`= "x" * "e"^"2x"/2 - int 1 * "e"^"2x"/2` dx
`= 1/2 "xe"^"2x" - 1/2 int "e"^"2x"` dx
`= 1/2 "x e"^"2x" - 1/2 * "e"^"2x"/2` + c
∴ I = `1/4 "e"^"2x" ("2x" - 1)` + c
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Solve: dy/dx = cos(x + y)
Write a value of
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int (cos2x)/(sin^2x) "d"x`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).