Advertisements
Advertisements
प्रश्न
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
उत्तर
`int (2x - 7)/sqrt(4x - 1).dx`
= `(1)/(2)int(2(2x - 7))/sqrt(4x - 1).dx`
= `(1)/(2)int((4x - 1) - 13)/sqrt(4x - 1).dx`
= `(1)/(2)int(((4x - 1))/sqrt(4x - 1) - 13/sqrt(4x - 1)).dx`
= `(1)/(2)int (4x - 1)^(1/2).dx - 13/2 int(4x - 1)^(-1/2).dx`
= `(1)/(2)((4x - 1)^(3/2))/((4)(3/2)) - (13)/(2).((4x - 1)^(1/2))/((4)(1/2)) + c`
= `(1)/(12)(4x - 1)^(3/2) - (13)/(4)sqrt(4x - 1) + c`
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int 1/("x" ("x" - 1))` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int x^2/sqrt(1 - x^6)` dx = ________________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (cos2x)/(sin^2x) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int (7x + 9)^13 "d"x` ______ + c
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int sec^6 x tan x "d"x` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int (logx)^2/x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int(1 + x + x^2/(2!) )dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int x^3 e^(x^2) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).