Advertisements
Advertisements
प्रश्न
उत्तर
\[\int x \cdot \sin^3 x\ dx \]
\[ = \int x \cdot \left[ \frac{1}{4}\left( 3 \sin x - \sin 3x \right) \right] dx \left[ \sin^3 A - \frac{1}{4}\left\{ 3 \sin A - \sin \left( 3A \right) \right\} \right]\]
\[ = \frac{3}{4}\int x_I \cdot \sin_{II} \text{ x dx} - \frac{1}{4}\int x \cdot \text{ sin 3x dx}\]
\[ = \frac{3}{4}\left[ x\int\text{ sin x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx } \right\}dx \right] - \frac{1}{4}\left[ x\int\text{ sin 3x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\sin 3x dx \right\}dx \right]\]
\[ = \frac{3}{4}\left[ x \left( - \cos x \right) - \int1 \cdot \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x \left( \frac{- \cos 3x}{3} \right) - \int1 \cdot \left( \frac{- \cos 3x}{3} \right)dx \right]\]
\[ = \frac{- 3x}{4} \cos x + \frac{3}{4} \sin x + \frac{x \cos 3x}{12} - \frac{\sin 3x}{36} + C\]
\[ = \frac{1}{4}\left[ - 3x \cos x + 3\sin x + \frac{x \cos 3x}{3} - \frac{\sin 3x}{9} + C \right]\]
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Write a value of
Write a value of
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
`int x^3 e^(x^2) dx`
`int "cosec"^4x dx` = ______.
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).