Advertisements
Advertisements
Question
Solution
\[\int x \cdot \sin^3 x\ dx \]
\[ = \int x \cdot \left[ \frac{1}{4}\left( 3 \sin x - \sin 3x \right) \right] dx \left[ \sin^3 A - \frac{1}{4}\left\{ 3 \sin A - \sin \left( 3A \right) \right\} \right]\]
\[ = \frac{3}{4}\int x_I \cdot \sin_{II} \text{ x dx} - \frac{1}{4}\int x \cdot \text{ sin 3x dx}\]
\[ = \frac{3}{4}\left[ x\int\text{ sin x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx } \right\}dx \right] - \frac{1}{4}\left[ x\int\text{ sin 3x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\sin 3x dx \right\}dx \right]\]
\[ = \frac{3}{4}\left[ x \left( - \cos x \right) - \int1 \cdot \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x \left( \frac{- \cos 3x}{3} \right) - \int1 \cdot \left( \frac{- \cos 3x}{3} \right)dx \right]\]
\[ = \frac{- 3x}{4} \cos x + \frac{3}{4} \sin x + \frac{x \cos 3x}{12} - \frac{\sin 3x}{36} + C\]
\[ = \frac{1}{4}\left[ - 3x \cos x + 3\sin x + \frac{x \cos 3x}{3} - \frac{\sin 3x}{9} + C \right]\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
tan2(2x – 3)
Write a value of
Write a value of\[\int \log_e x\ dx\].
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate `int (5"x" + 1)^(4/9)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int(1 + x + x^2/(2!))dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).