English

∫ X Sin 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x \sin^3 x\ dx\]
Sum

Solution

\[\int x \cdot \sin^3 x\ dx \]
\[ = \int x \cdot \left[ \frac{1}{4}\left( 3 \sin x - \sin 3x \right) \right] dx \left[ \sin^3 A - \frac{1}{4}\left\{ 3 \sin A - \sin \left( 3A \right) \right\} \right]\]
\[ = \frac{3}{4}\int x_I \cdot \sin_{II} \text{ x dx} - \frac{1}{4}\int x \cdot \text{ sin  3x   dx}\]
\[ = \frac{3}{4}\left[ x\int\text{ sin  x  dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin  x  dx } \right\}dx \right] - \frac{1}{4}\left[ x\int\text{ sin  3x  dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\sin 3x dx \right\}dx \right]\]
\[ = \frac{3}{4}\left[ x \left( - \cos x \right) - \int1 \cdot \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x \left( \frac{- \cos 3x}{3} \right) - \int1 \cdot \left( \frac{- \cos 3x}{3} \right)dx \right]\]
\[ = \frac{- 3x}{4} \cos x + \frac{3}{4} \sin x + \frac{x \cos 3x}{12} - \frac{\sin 3x}{36} + C\]
\[ = \frac{1}{4}\left[ - 3x \cos x + 3\sin x + \frac{x \cos 3x}{3} - \frac{\sin 3x}{9} + C \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 95 | Page 204

RELATED QUESTIONS

Evaluate :   `∫1/(cos^4x+sin^4x)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

tan2(2x – 3)


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int \log_e x\ dx\].

 


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate `int (5"x" + 1)^(4/9)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ("d"x)/(x(x^4 + 1))` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int(1 + x + x^2/(2!))dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×