Advertisements
Advertisements
Question
Write a value of\[\int \log_e x\ dx\].
Solution
= x loge x – x + C
= x (loge x – 1) + C
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sin x/(1+ cos x)`
Write a value of
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`