English

Write a Value of ∫ Log E X D X - Mathematics

Advertisements
Advertisements

Question

Write a value of\[\int \log_e x\ dx\].

 

Sum

Solution

\[\int\]loge x dx
` ∫   1_{II} . log_{e_I   \text{ x   dx } `
 =  \[\log_e x\int1 \text{ dx} - \int\left\{ \frac{d}{dx}\left( \log_e x \right)\int1 \text{ dx} \right\}dx\]
\[\int\]= loge  x   \[\int\] 1 . dx  \[\int\] \[\frac{1}{x} \times x   .   dx\]
= loge x × x – ​\[\int\]dx
=​ x loge x – x + C
=​ x loge x – x + C
x (loge x – 1) + C
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 20 | Page 197

RELATED QUESTIONS

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`sin x/(1+ cos x)`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int x^3"e"^(x^2) "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×