Advertisements
Advertisements
Question
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
Solution
Let I = `int"e"^x (1/x - 1/x^2) "d"x`
Put f(x) = `1/x`
∴ f'(x) = `-1/x^2`
∴ I = `int"e"^x ["f"(x) + "f'"(x)] "d"x`
= `"e"^x*"f"(x) + "c"`
∴ I = `"e"^x* 1/x + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`1/(1 + cot x)`
Write a value of
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int sin^-1 x`dx = ?
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).