Advertisements
Advertisements
प्रश्न
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
उत्तर
Let I = `int"e"^x (1/x - 1/x^2) "d"x`
Put f(x) = `1/x`
∴ f'(x) = `-1/x^2`
∴ I = `int"e"^x ["f"(x) + "f'"(x)] "d"x`
= `"e"^x*"f"(x) + "c"`
∴ I = `"e"^x* 1/x + "c"`
APPEARS IN
संबंधित प्रश्न
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
The value of `intsinx/(sinx - cosx)dx` equals ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate:
`intsqrt(sec x/2 - 1)dx`