हिंदी

Integrate the following functions w.r.t. x : x.sec2(x2)tan3(x2) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`

योग

उत्तर

Let I = `int (x.sec^2(x^2))/sqrt(tan^3(x^2)).dx`

Put tan(x2) = t

∴ sec2(x2) x 2x dx = dt

∴ `x.sec^2(x^2)dx = dt/(2)`

∴ I = `int (1)/sqrt(t^3).dt/(2)`

= `(1)/(2) int t^(-3/2)dt`

= `(1)/(2).(t^(-1/2))/(-1/2) + c`

= `(-1)/sqrt(t) + c`

= `(-1)/sqrt(tan(x^2)) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.04 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate :`intxlogxdx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

cot x log sin x


`int (dx)/(sin^2 x cos^2 x)` equals:


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


`int logx/(log ex)^2*dx` = ______.


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int 1/("x" ("x" - 1))` dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int cos^7 x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int sec^6 x tan x   "d"x` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int 1/(sinx.cos^2x)dx` = ______.


Write `int cotx  dx`.


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×