Advertisements
Advertisements
प्रश्न
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
उत्तर
f '(x) = `"x"^2/2 - "kx" + 1` ...[Given]
f(x) = ∫ f '(x) dx
`= int ("x"^2/2 - "kx" + 1)`dx
`= 1/2 int "x"^2 "dx" - "k" int "x" "dx" + int 1 * "dx"`
`= 1/2 * "x"^3/3 - "k" ("x"^2/2) + "x" + "c"`
∴ f(x) = `"x"^3/6 - "k"/2 "x"^2 + "x" + "c"` ...(i)
Now, f(0) = 2
∴ `(0)^3/6 - "k"/2 (0)^2 + 0 + "c"` = 2
∴ c = 2 ...(ii)
Also f(3) = 5 ...[Given]
∴ `(3)^3/6 - "k"/2 (3)^2 + 3 + 2 = 5`
∴ `27/6 - "9k"/2 + 5 = 5`
∴ `9/2 - "9k"/2 = 0`
∴ `"9k"/2 = 9/2`
∴ k = 1 ....(iii)
Substituting (ii) and (iii) in (i), we get
f(x) = `"x"^3/6 - "x"^2/2 + "x" + 2`
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x/(9 - 4x^2)`
Evaluate: `int 1/(x(x-1)) dx`
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int sqrt(1 + sin2x) "d"x`
`int sin^-1 x`dx = ?
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`