Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
उत्तर
Let I = `int (1)/(3 - 2cos 2x).dx`
Put tan x = t
∴ x = tan–1 t
∴ dx = `dt/(1 + t^2) and cos2x = (1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(3 - 2((1 - t^2)/(1 + t^2))).dt/(1 + t^2)`
= `int (1 + t^2)/(3 + 3t^2 - 2 + 2t^2).dt/(1 + t^2)`
= `int (1)/(1 + 5t^2)dt`
= `(1)/(5) int (1)/((1 /sqrt(5))^2 + t^2)dt`
= `(1)/(5) xx (1)/((1/sqrt(5)))tan^-1(t/(1/sqrt(5))) + c`
= `(1)/sqrt(5)tan^-1(sqrt(5)tanx) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
`int logx/(log ex)^2*dx` = ______.
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int cos sqrtx` dx = _____________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int cos^3x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).