Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Solution
Let I = `int (1)/(3 - 2cos 2x).dx`
Put tan x = t
∴ x = tan–1 t
∴ dx = `dt/(1 + t^2) and cos2x = (1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(3 - 2((1 - t^2)/(1 + t^2))).dt/(1 + t^2)`
= `int (1 + t^2)/(3 + 3t^2 - 2 + 2t^2).dt/(1 + t^2)`
= `int (1)/(1 + 5t^2)dt`
= `(1)/(5) int (1)/((1 /sqrt(5))^2 + t^2)dt`
= `(1)/(5) xx (1)/((1/sqrt(5)))tan^-1(t/(1/sqrt(5))) + c`
= `(1)/sqrt(5)tan^-1(sqrt(5)tanx) + c`.
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int (log x)/(log ex)^2` dx = _________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int sqrt(1 + sin2x) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int(3x^2 - 5)^2 "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
`int "cosec"^4x dx` = ______.
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`